-3+2i

来自删除百科
本条目“-3+2i”在中文维基百科已被删除其它版本),这是一个删除前的存档副本
Shizhao删除了-3+2i,理由是:
内容为:'{{Vfd|过期關注度}} {{Notability|time=2010-9-19}} {{整数 | list =[[数表]] — [[複数]] [[4i]] [[3i]] [[-3+2i]] [[2i]] [[3+2i]] [[虛數單位|i]] [[-5]] [[-4]] [[-3]] [[-2]] [[-1]] [[0]] [[1]] [[2]] [[3]] [[4]] ...'
这个理由未必准确 (为什么?)

本条目共存留37天:

  • 创建于:2010-09-19
  • 删除于:2010-10-27
  • 贡献者:3
  • 编辑:11
  • 浏览:无数据
请阅读免责声明。删除百科只是中文维基百科被删除条目的存档。   Alert icon 建议删除本条目

本条目被提交删除。理由是:“过期關注度”

本条目在2010-9-19被标记为不符合通用关注度指引,或下列標準:傳記虛構事物發明研究網站

-3+2i
-3+2i-1 -3+2i -3+2i+1
数表整数

数表複数

4i

3i

-3+2i 2i 3+2i

i

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

-i

-3-2i -2i 3-2i

-3i

命名
數字-3+2i
名稱-3+2i
小寫虛數二減三
大寫Template:數字轉中文/重要模組Template:數字轉中文/重要模組
序數詞英语Ordinal numeralTemplate:數字轉中文/重要模組Template:數字轉中文/重要模組
Lua错误 在Module:ConvertNumeric的第575行:Invalid decimal numeral
識別
種類整數
性質
質因數分解錯誤:不正確的數字
表示方式
Lua错误 在Module:Infobox_number的第78行:attempt to index field 'wikibase' (a nil value)

是位於複數平面第二象限複數

数学性质

  • 實數部是-3虛數部是2
  • 也可以算是一種複數
  • 絕對值


本条目被标记为數小作品

參見

引用資料來源

  • Conway, John. Functions of One Complex Variable I. Springer. 1986. ISBN 0-387-90328-3. 
  • An Imaginary Tale: The Story of , by Paul J. Nahin; Princeton University Press; ISBN 0-691-02795-1 (hardcover, 1998). A gentle introduction to the history of complex numbers and the beginnings of complex analysis.
  • Numbers, by H.-D. Ebbinghaus, H. Hermes, F. Hirzebruch, M. Koecher, K. Mainzer, J. Neukirch, A. Prestel, R. Remmert; Springer; ISBN 0-387-97497-0 (hardcover, 1991). An advanced perspective on the historical development of the concept of number.
  • The Road to Reality: A Complete Guide to the Laws of the Universe, by Roger Penrose; Alfred A. Knopf, 2005; ISBN 0-679-45443-8. Chapters 4-7 in particular deal extensively (and enthusiastically) with complex numbers.
  • Unknown Quantity: A Real and Imaginary History of Algebra, by John Derbyshire; Joseph Henry Press; ISBN 0-309-09657-X (hardcover 2006). A very readable history with emphasis on solving polynomial equations and the structures of modern algebra.
  • Visual Complex Analysis, by Tristan Needham; Clarendon Press; ISBN 0-19-853447-7 (hardcover, 1997). History of complex numbers and complex analysis with compelling and useful visual interpretations.
  • solvemymath.com Complex Numbers Calculator
  • Interactive Visual Representation of Complex Numbers
  • 引用部份資料
  • 引用一點點資料
  • ^To find such a number, one can solve the equation = + = Because the real and imaginary parts are always separate, we regroup the terms: and get a system of two equations: Substituting into the first equation, we get = Because is a real number, this equation has two real solutions for x: and . Substituting both of these results into the equation = 1 in turn, we will get the same results for y. Thus, the square root of i is the number and University of Toronto Mathematics Network: What is the square root of i? URL retrieved March 26, 2007.
  • Euler's work on Imaginary Roots of Polynomials at Convergence
  • University of Toronto Mathematics Network: What is the square root of i?
  • 部分來自英文維基

本条目被标记为数学小作品