-3+2i
本条目“-3+2i”在中文维基百科已被删除(其它版本),这是一个删除前的存档副本。
Shizhao删除了-3+2i,理由是:
内容为:'{{Vfd|过期關注度}} {{Notability|time=2010-9-19}} {{整数 | list =[[数表]] — [[複数]] [[4i]] [[3i]] [[-3+2i]] [[2i]] [[3+2i]] [[虛數單位|i]] [[-5]] [[-4]] [[-3]] [[-2]] [[-1]] [[0]] [[1]] [[2]] [[3]] [[4]] ...'。 这个理由未必准确 (为什么?)
| ||||
请阅读免责声明。删除百科只是中文维基百科被删除条目的存档。 | 建议删除本条目 |
| ||||
---|---|---|---|---|
| ||||
命名 | ||||
數字 | -3+2i | |||
名稱 | -3+2i | |||
小寫 | 虛數二減三 | |||
大寫 | Template:數字轉中文/重要模組加Template:數字轉中文/重要模組虛 | |||
序數詞 | 第Template:數字轉中文/重要模組加Template:數字轉中文/重要模組虛 Lua错误 在Module:ConvertNumeric的第575行:Invalid decimal numeral | |||
識別 | ||||
種類 | 整數 | |||
性質 | ||||
質因數分解 | 錯誤:不正確的數字 | |||
表示方式 | ||||
Lua错误 在Module:Infobox_number的第78行:attempt to index field 'wikibase' (a nil value) | ||||
数学性质
- 是個高斯整數
- 也可以算是一種複數
- 的絕對值是
參見
引用資料來源
- Conway, John. Functions of One Complex Variable I. Springer. 1986. ISBN 0-387-90328-3.
- An Imaginary Tale: The Story of , by Paul J. Nahin; Princeton University Press; ISBN 0-691-02795-1 (hardcover, 1998). A gentle introduction to the history of complex numbers and the beginnings of complex analysis.
- Numbers, by H.-D. Ebbinghaus, H. Hermes, F. Hirzebruch, M. Koecher, K. Mainzer, J. Neukirch, A. Prestel, R. Remmert; Springer; ISBN 0-387-97497-0 (hardcover, 1991). An advanced perspective on the historical development of the concept of number.
- The Road to Reality: A Complete Guide to the Laws of the Universe, by Roger Penrose; Alfred A. Knopf, 2005; ISBN 0-679-45443-8. Chapters 4-7 in particular deal extensively (and enthusiastically) with complex numbers.
- Unknown Quantity: A Real and Imaginary History of Algebra, by John Derbyshire; Joseph Henry Press; ISBN 0-309-09657-X (hardcover 2006). A very readable history with emphasis on solving polynomial equations and the structures of modern algebra.
- Visual Complex Analysis, by Tristan Needham; Clarendon Press; ISBN 0-19-853447-7 (hardcover, 1997). History of complex numbers and complex analysis with compelling and useful visual interpretations.
- solvemymath.com Complex Numbers Calculator
- Interactive Visual Representation of Complex Numbers
- 引用部份資料
- 引用一點點資料
- ^To find such a number, one can solve the equation = + − = Because the real and imaginary parts are always separate, we regroup the terms: and get a system of two equations: Substituting into the first equation, we get = Because is a real number, this equation has two real solutions for x: and . Substituting both of these results into the equation = 1 in turn, we will get the same results for y. Thus, the square root of i is the number and University of Toronto Mathematics Network: What is the square root of i? URL retrieved March 26, 2007.
- Euler's work on Imaginary Roots of Polynomials at Convergence
- University of Toronto Mathematics Network: What is the square root of i?
- 部分來自英文維基